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I. INTRODUCTION

The present paper is the second part �referred to as Part II
in the following� of a study of the vibrational, thermoelastic,
and dielectric properties of zirconium dioxide ZrO2 �zirco-
nia� through density-functional perturbation theory within
the local-density approximation �LDA� and generalized-
gradient approximations �GGA�. In the first part1 �hereafter
called Part I� we have presented the computational frame-
work for both Parts, as well as the phonon dispersion curves
of the five known polymorphs of ZrO2, together with some
of their thermoelastic properties deduced in the quasihar-
monic approximation. The present Part II is devoted to the
derived computation of the static dielectric properties, in-
cluding the Raman spectra, of the five zirconia phases under
varying hydrostatic pressure.

Apart for the many technological applications �see Part I�
benefiting from its thermomechanical and chemical proper-
ties, zirconia is an interesting material also for its possible
applications in the semiconductor industry �see Ref. 2 and
references therein�; however, disappointingly low values of
the components of the dielectric tensor were found for the
only naturally stable polymorph �the monoclinic phase�.

First-principles studies3–7 have therefore been conducted
on the dielectric constants of the cubic and the tetragonal
polymorphs �for p=0�, showing an increase by a factor of 2
of the components of the lattice contribution to the dielectric
tensor. Here we reassess these previous investigations, under
varying pressure up to 48 GPa, covering also the two remain-
ing polymorphs, i.e., the two orthorhombic high-pressure
phases, in order to ascertain whether they have any remark-
able dielectric properties. We find that they are indeed better,
but marginally so, than those of the monoclinic structure.

After presenting some preliminaries in Sec. II, the com-
puted dielectric properties of each ZrO2 polymorph in turn
are given in Sec. III, for pressure p=0, and then under vary-
ing p. The Raman spectra of the tetragonal, monoclinic, and
of the two orthorhombic phases are given next �Sec. IV�.
Some conclusive remarks are made in Sec. V.

II. THEORETICAL CONSIDERATIONS

A. Symmetry considerations

Both the dielectric permittivity � �a bulk property of the
whole crystal� and the Born effective charges Zeff �a property
which depends on the site symmetry� are tensors of rank 2;

therefore, they are both invariant under the inversion 1̄, even
if the latter is lacking from the point group P of the crystal or
the site-symmetry group Sj of the orbit j. Consequently, the
symmetry group of both tensors are the Laue groups corre-
sponding to P or Sj.

As the five investigated polymorphs are all centrosym-
metric, the dielectric tensor has P as invariance group; how-
ever, some site-symmetry groups Sj are not centrosymmetric
�this happens for instance for all orbits of the monoclinic
phase�. Furthermore, as the Laue group Lj corresponding to
Sj may be a proper subgroup of P of index �P :Lj��1, it may
happen that there exist �P :Lj� different variants of the tensor
of the Born effective charges, related by symmetry opera-
tions of P not belonging to Lj.

For instance, the Born effective charges for the Zr orbit 4e

�site symmetry 1, Laue group 1̄� of the monoclinic phase are

of two �the index of 1̄ in 2 /m� variants

Z1
eff�Zr,LDA� = � 5.505 − 0.4476 0.2366

− 0.1172 5.527 0.1647

0.2422 0.3975 4.865
� ,

Z2
eff�Zr,LDA� = � 5.505 0.4476 0.2366

0.1172 5.527 − 0.1647

0.2422 − 0.3975 4.865
�

the second matrix being obtained by acting on the first with
the twofold rotation around the �010�m axis or equivalently
with the reflection about the �010�m plane. The charge neu-
trality is ensured for the matrix elements which, by invari-
ance with respect to the point group P of the crystal, are
absent; in the example above the �1,2�, �2,1�, �2,3�, and �3,2�
components cancel out for each orbit separately. The other
elements should cancel out when taking into account all or-
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bits; this is however not always strictly true computationally,
as seen below. In the following, only one tensor of Born
effective charges is given for each orbit; details on symmetry
are shown in Table I.

B. Electronic and lattice dielectric tensors;
Born effective charges

The electronic contribution �� to the dielectric tensor and
the Born effective charges Zeff can be computed using the
formalism described in Refs. 9–11. Let D�0� be the dynami-
cal matrix at the � point; the lattice contribution to the di-
electric tensor, resulting from the ionic displacements, is
given by

�ij
lattice��� =

4�

V0
�
m

Sm,ij

�m
2 − �2 , �1�

�see, for instance, Eq. �52� in Ref. 9�, where V0 is the volume
of the primitive cell, �m and Sm,ij the frequency and mode-
oscillator strength of the mth infrared-active eigenmode of
D�0�, and

Sm,ij = �
Ik

1

�MI

ZI,ik
eff uI,k

� �m,0� � �
Jl

1

�MJ

ZJ,jl
eff uJ,l�m,0� , �2�

where ZI,ik
eff is the �i ,k� component of the Born effective

charge for ion I, uI,k�m ,0� the kth component of the mth
eigenvector of D�0� corresponding to ion I; � indicates the
complex conjugate, and MI the mass of ion I. The eigendis-
placements are normalized according to

�
Ii

uI,i
� �m,0�uI,i�n,0� = 	mn

	ij being the identity matrix. The total dielectric tensor is
then the sum of the electronic and lattice contributions �no
polar contributions exist here as ZrO2 has no permanent di-
pole moment, all polymorphs being centrosymmetric�. In the
following we shall use the shorthand notation �ij

lattice for the
static contribution �i.e., at �=0�.

C. Frequencies at the � point

Frequencies �wave numbers� at the � point and the corre-
sponding irreducible representations in the Mulliken
notation12 are tabulated below; as is well known, the
infrared-active modes transform exactly as the irreducible
representations of a polar vector, the induced dipole moment
�ungerade representations�, whereas the Raman-active
modes transform as the irreducible representations of a
rank-2 symmetric tensor, the Raman polarization tensor �ger-
ade representations�. Knowing for each eigenmode m the
eigenvectors u�m ,0� enables to determine the symmetry as-
signment. In the following, we have indicated the LO-TO
splitting for the cubic and tetragonal cases only, as the fre-
quencies of �quasi-� longitudinal waves are direction-
dependent, except for waves propagating along symmetry
axes and waves traveling in planes orthogonal to a threefold,
fourfold, or sixfold axis �see, for instance, Refs. 13 and 14�.

D. Pressure dependence of the dielectric properties

Covalent compounds, for which the bond polarizability
depends critically on their length, have their electronic di-
electric permittivity decrease with the bond length as pres-
sure increases �see for instance Ref. 15 and references
therein�; on the contrary, for ionic compounds with large
band gaps, the density of polarizable centers 
 increases with
pressure �as for any other compound�, while the microscopic
polarizability � remains almost constant �see for instance
Refs. 15–17�. The pressure dependence of the electronic con-
tribution can be found with a simple model using the follow-
ing local-field equation15

4��
� =
�� − 1

�� +
1

�
− 1

, �3�

where the dimensionless parameter ��0 is a phenomeno-
logical constant expressing how sharply the polarization cen-
ters are localized: it ranges from 0 �delocalized polarization
centers, appropriate for metals, but also for electrons in co-
valent bonding because of the large overlap of the orbitals
forming the bond15� to 1/3 �point charges, appropriate for

TABLE I. Symmetry properties of the five polymorphs of zirconia; the space group is indicated on the left
with the corresponding point group between brackets, the crystallographic orbits with the atomic species and
Wyckoff position �Ref. 8� in the middle, and the oriented site-symmetry group �with the corresponding Laue
group if different� on the right column.

Phase Orbit Site symmetry �Laue�

Cubic Fm3̄m �m3̄m� Zr, 4a m3̄m

O, 8c 4̄3m �m3̄m�
Tetragonal P42 /nmc �4 /mmm� �origin choice 2� Zr, 2a 4̄m2 �4 /mmm�

O, 4d 2mm �mmm�

Monoclinic P21 /c �2 /m� Zr/O/O, 4e 1 �1̄�

Orthorhombic Pbca �mmm� Zr/O/O, 8c 1 �1̄�
Orthorhombic Pnma �mmm� Zr/O/O, 4c m �2 /m�
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TABLE II. Electronic contribution �� to the dielectric permittivity tensor and Born effective charges Zeff for the known polymorphs of
zirconia at p=0; computations for both sets have been done with Ecut=15 Ha. The left column gives the component of the matrices and “−”
indicates a zero entry. Oxygen orbits are ordered as in Table I, Part I.

��

Fm3̄m P42 /nmc P21 /c Pbca Pnma

GGA LDA GGA LDA GGA LDA GGA LDA GGA LDA

11 5.798 5.746 5.750 5.762 5.350 5.386 5.705 5.683 6.387 6.227

13,31 – – – – 0.1582 0.1735 – – – –

22 5.798 5.746 5.750 5.762 5.386 5.453 5.546 5.523 6.142 6.083

33 5.798 5.746 5.004 5.238 5.027 5.037 5.351 5.358 6.294 6.257

Zeff�Zr� GGA LDA GGA LDA GGA LDA GGA LDA GGA LDA

11 5.694 5.710 5.745 5.726 5.519 5.505 5.705 5. 664 5.206 5.022

12 – – – – −0.3828 −0.4476 −0.4327 −0.4277 − –

13 – – – – 0.2185 0.2366 0.04679 0.04901 0.03575 0.1164

21 – – – – −0.1851 −0.1172 0.03391 0.01910 – –

22 5.694 5.710 5.745 5.726 5.444 5.527 5.431 5.453 5.011 4.998

23 – – – – 0.1731 0.1647 0.1440 0.1332 – –

31 – – – – 0.2770 0.2422 0.3265 0.3101 0.04043 0.1925

32 – – – – 0.3561 0.3975 0.06485 0.03448 – –

33 5.694 5.710 4.744 5.078 4.890 4.865 5.023 5.062 5.134 5.176

Zeff�O� GGA LDA GGA LDA GGA LDA GGA LDA GGA LDA

11 −2.827 −2.849 −3.750 −3.529 −3.010 −3.051 −3.064 −3.072 −2.670 −2.632

12 – – – – 1.208 1.144 0.8903 0.8634 – –

13 – – – – −0.2017 −0.2129 0.6998 0.6726 −0.1269 −0.03364

21 – – – – 1.458 1.435 1.137 1.092 – –

22 −2.827 −2.849 −1.979 −2.203 −2.687 −2.719 −2.636 −2.641 −2.647 −2.641

23 – – – – −0.6914 −0.6599 0.3394 0.3463 – –

31 – – – – −0.1894 −0.2030 0.6692 0.6431 −0.00042 0.08638

32 – – – – −0.7407 −0.6683 0.3460 0.3451 – –

33 −2.827 −2.849 −2.362 −2.538 −2.302 −2.271 −2.467 −2.494 −2.337 −2.343

Zeff�O� GGA LDA GGA LDA GGA LDA

11 −2.437 −2.454 −2.570 −2.593 −2.465 −2.392

12 0.2421 0.1313 −0.05550 −0.04719 – –

13 −0.01678 −0.02372 0.1270 0.1102 0.2308 0.2041

21 0.2763 0.1850 −0.01842 −0.01450 – –

22 −2.740 −2.809 −2.780 −2.814 −2.344 −2.349

23 0.3895 0.3906 0.3008 0.3113 – –

31 −0.03126 −0.03920 0.01601 0.01542 0.2207 0.2369

32 0.3992 0.4246 0.3449 0.3637 – –

33 −2.570 −2.596 −2.540 −2.568 −2.781 −2.836
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ionic crystals�. The latter case gives the well-known
Clausius-Mossotti equation �also called Lorentz-Lorenz
equation if we replace �� by n2, where n is the refractive
index�

4�

3

� =

�� − 1

�� + 2
. �4�

Equations �3� and �4� are strictly valid for cubic crystallo-
graphic sites only.18 The pressure derivative of Eq. �3� gives,

0=1 /B0=−�� ln V /�p�0 being the compressibility for the
reference state at p=0

� ln ��

�p
=

�� − 1

�� ����� − 1� + 1� � 	
 +
� ln �

�p



0
.

The electronic dielectric permittivity thus increases with p
for ionic compounds �as � remains nearly constant� whereas
it decreases beyond a certain critical value �� ln � /�p�c
=−
 for covalent compounds; as we shall see in Sec. III,
zirconia exhibits the two behaviors.
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FIG. 1. �Color online� Infrared oscillator strengths, Eq. �2� �top
panel� and effective contribution, Eq. �1� �bottom panel�, in atomic
units, for the five polymorphs of zirconia �LDA�. Degeneracy is
taken into account for the oscillator strengths. Data on two ortho-
rhombic phases are drawn on the lower part for clarity. The arrow
indicates to the lowest Pbca mode, which is barely visible at this
scale �strength inferior to 4�10−5�.

TABLE III. Wave numbers �in cm−1� at p=0 of the phonon modes at the � point and symmetry assign-
ment for the cubic phase. The first two columns of results �GGA and LDA� refer to the present work, see text.
The correspondence has been made on symmetry assignments as given by the authors of the cited works.
“Exp” indicates experimental data; the amount of dopants �if any� is indicated with the reference.

Infrared GGA LDA LDAa LDAb Expc Expd

T1u �TO� 222.1 265.1 258 269.4 358 320

�LO� 629.1 663.9 689 705

Raman GGA LDA LDAb Expe,f Expg Exph

T2g 548.0 581.4 587.0 600 614.3 598.5

aReference 21.
bReference 3.
cReference 23 �Y2O3 at 46% mol�.
dReference 24 �Y2O3 at 20% mol�.

eReference 25 �Y2O3 at 10% mol�.
fReference 26 �Y2O3 at 20% mol�.
gReference 27 �Y2O3 at 9.5% mol�.
hReference 27 �CaO at 12% mol�.

TABLE IV. Pressure and volume dependence of the electronic
and lattice contributions to the dielectric tensor of the cubic phase.

p
�GPa�

V
�au3 /atom� �11

� �11
lattice

−23.55 79.78 5.905 121.8

−12.00 75.09 5.805 46.34

−7.997 73.78 5.781 39.05

−3.980 72.58 5.762 34.00

0.051 71.47 5.746 30.28

2.000 70.96 5.739 28.81

4.091 70.43 5.732 27.41

6.001 69.97 5.727 26.26

8.139 69.47 5.721 25.14

12.20 68.57 5.712 23.28

24.20 66.21 5.693 19.40

30.00 65.20 5.688 18.06

33.00 64.71 5.686 17.46

36.36 64.17 5.684 16.84

48.53 62.40 5.683 15.04
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The lattice contribution is dependent instead on the mode-
oscillator strength Si on one hand, which is directly propor-
tional to the Born effective charges and to the ionic eigendis-
placements, and on the frequencies �i of these modes on the

other hand, whose dependence on pressure is given by the
Grüneisen parameters �i and the bulk modulus B=
−V�p /�V �see Eq. �2�, Part I�. The derivative with respect to
pressure of the lattice contribution of the ith mode is given

TABLE V. Wave numbers �in cm−1� of the phonon modes and symmetry assignment for the tetragonal
phase. See the caption to Table III.

Infrared GGA LDA GGAa LDAb LDAc Expd

A2u �TO� 320.3 333.5 325 338.5 334 339

�LO� 609.4 653.7 663.8 354

Eu �TO� 79.37 148.3 76 152.7 154 164

�LO� 206.8 261.9 270.5 232

Eu �TO� 426.6 439.6 435 449.4 437 467

�LO� 716.3 725.8 734.1 650

Raman GGA LDA GGAa LDAb Expe Expf Expg Exph

A1g 300.1 264.8 290 259.1 270 269.4 265 260.4

B1g 279.1 323.2 286 330.5 318 319.4 322 327.8

571.2 598.3 569 607.0 602 602.5 609 609.0

Eg 122.5 144.5 126 146.7 146 149.2 148 150.6

411.7 464.6 411 473.7 458 461.6 466 468.0

619.2 647.0 625 659.2 648 648.5 642 642.6

Silent GGA LDA LDAb

B2u 612.7 661.8 673.4

aReference 5.
bReference 3.
cReference 21.
dReference 23.

eReference 38.
fReference 39.
gReference 40.
hReference 41 �Y2O3 at 5% mass�.

TABLE VI. Pressure and volume dependence of the electronic and lattice contributions to the dielectric
tensor of the tetragonal phase.

p
�GPa�

V
�au3 /atom� �11

� �33
� �11

lattice �33
lattice

−17.84 82.66 5.741 4.786 20.98 13.04

−11.98 78.18 5.753 4.977 192.5 13.68

−7.956 76.01 5.757 5.079 87.59 14.12

−3.893 74.24 5.760 5.164 56.97 14.51

0.011 72.77 5.762 5.238 43.24 14.88

3.972 71.45 5.766 5.310 35.19 15.28

8.377 70.16 5.768 5.373 29.81 15.56

12.03 69.17 5.773 5.432 26.53 15.95

18.01 67.74 5.779 5.504 22.99 16.27

24.03 66.43 5.790 5.579 20.44 16.74

30.09 65.25 5.802 5.645 18.60 17.15

32.92 64.73 5.808 5.673 17.91 17.31

36.15 64.21 5.810 5.678 17.28 16.92
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TABLE VII. Wave numbers �in cm−1� of the phonon modes and symmetry assignment for the monoclinic
phase. See the caption to Table III. A mode at 760 cm−1 has been assigned to the Ag irreducible represen-
tation in Ref. 46 whereas our computations indicate Bg.

Infrared GGA LDA GGAa LDAb Expc Expd

Au 104

165.9 183.8 170 224 180

192

230.5 239.7 233 242 235 233

244.6 261.2 239 305 258 270

318.6 359.4 325 347

379.6 403.1 386 401 415

464.9 475.7 461 478 434 443

541.5 580.0 548 571

613.0 642.0 610 634 738 740

Bu 206.9 230.7 212 181

276.3 313.1 283 253

298.0 320.1 303 319 351 360

330.3 363.1 341 355 373 373

389.7 420.5 393 414

459.7 491.3 464 483 505 515

580 620

686.6 720.0 685 711 738 740

Raman GGA LDA GGAa LDAb Expe Expf

Ag 98.82 116.9 108 103 102

163.7 183.2 169 180 179 176

175.3 193.2 179 190 190 187

284.9 324.9 293 317 305 300

320.6 353.9 324 345 348

368.1 383.6 371 381

451.5 467.8 453 466 476 475

524.5 552.1 524 548 556 558

603.4 634.7 605 631 637 635

Bg 159.2 177.5 162 175 179

213.1 225.3 216 224 222 220

306.9 320.7 303 313 333

317.2 332.1 316 330 334 344

364.8 390.3 371 382 381 380

473.3 488.2 473 489 500 510

514.2 539.9 512 533 534 536

576.2 610.6 580 601 615 613

724.1 750.1 719 748

aReference 5.
bReference 21.
cReference 43.
dReference 44.

eMisprints on symmetry assignments?
fReference 45.
gReference 46.
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by

��Si/�i
2�

�p
=

1

�i
2	 �Si

�p
−

2Si�i

B0

 �5�

the subscript 0 refers to the reference state at p=0. Depend-
ing on the variation in the Born effective charges with pres-
sure, the lattice contribution may therefore increase even for
modes with positive Grüneisen parameters; however, it is
expected in most cases that the second term in Eq. �5� be
dominant, hence leading to a decrease in lattice contribution
as pressures increases.

III. DIELECTRIC PROPERTIES

A. Electronic contribution and Born effective charges

The results for all the zirconia polymorphs, at p=0, are
summarized in Table II. The charge neutrality rule is slightly
violated, which is a consequence of the truncation of the
density of charge when passing from real to Fourier space,
especially pronounced when using insufficient Brillouin zone
�BZ� sampling, core corrections and GGA ultrasoft
potentials.19

The prominent features are: �i� rather marked deviations
of the Born effective charges with respect to the nominal
static ionic charges, showing an important dynamical transfer
of charge between the strongly electronegative O2− and the
weakly electropositive Zr4+ ions;20,21 �ii� a marked aniso-
tropy of the dielectric and Born charge tensors for the tetrag-
onal, monoclinic, and orthorhombic Pbca phase, with a sys-
tematic decrease of approximately 10% of the zz component
with respect to the other two diagonal terms.

Figure 1 gives explicitly the infrared mode-oscillator
strengths �as calculated in Eqs. �1� and �2�� of the five poly-
morphs, useful in understanding the relative values of the
dielectric constants. The bottom panel shows the large effect
of the volume V0 of the primitive cell on the diminution of
the effective contribution to the lattice dielectric tensor.

B. Cubic Fm3̄m phase

1. Results at p=0

The dielectric tensors and the Born effective charges have
cubic symmetry, i.e., they are isotropic. There is good agree-
ment with the computational results obtained in Refs. 21 and
22.

Wave numbers at the � point are given in Table III. As
explained in Sec. III A, Part I, experimental data are for sta-
bilized zirconia, as cubic zirconia is not stable at room con-
ditions, and structural disorder associated with oxygen va-
cancies shows clearly in the infrared and Raman spectra;
compare Fig. 2 in Ref. 25 with Fig. 3 in Ref. 28; see also
Table I in Ref. 23. The decomposition of the vibrational rep-
resentation �vib �see, for instance, Refs. 29 and 30� into irre-
ducible representations at the � point is

�vib�Zr� = T1u,

�vib�O� = T1u + T2g

thus only one triply degenerate mode is infrared active; the
Raman mode T2g is entirely due to the oxygen sublattice
�Table III�.

As we have seen in Part I, the large Grüneisen parameters
explain the strong variation of the wave numbers with vol-
ume and therefore the softening of phonons when using the
generalized-gradient approximation. Given that the frequen-
cies enter Eq. �1� with a square, it is therefore not surprising
to see large differences for the lattice contribution, which are
found to be

�ij
lattice�GGA� = 40.72	ij and �ij

lattice�LDA� = 30.28	ij ,

respectively, to be compared to 31.8	ij �Ref. 21� and 30.5	ij
�Ref. 4�. When increasing the cutoff energy to 30 Ha and the
BZ sampling to 8�8�8, the GGA value is still seriously
overestimated ��ij

lattice=41.47	ij� with respect to the LDA cal-
culations ��ij

lattice=30.33	ij with the same sampling�; this is
also the case for the tetragonal polymorph as seen below.

TABLE VIII. Pressure and volume dependence of the electronic and lattice contributions to the dielectric tensor for the monoclinic
phase.

p
�GPa�

V
�au3 /atom� �11

� �22
� �33

� �12
� �11

lattice �22
lattice �33

lattice �12
lattice

−15.92 85.04 5.270 5.209 4.986 0.1632 18.99 17.06 15.02 1.275

−11.89 81.76 5.352 5.318 5.058 0.1487 19.40 17.57 14.29 1.134

−7.961 79.94 5.361 5.351 5.053 0.1460 18.24 16.34 12.95 1.124

−3.985 78.31 5.367 5.389 5.042 0.1505 17.28 15.37 11.85 1.043

0 76.60 5.386 5.453 5.037 0.1735 16.66 14.76 10.99 0.9793

4.059 74.54 5.444 5.529 5.061 0.2063 16.12 14.21 10.60 0.9362

8.156 72.47 5.523 5.591 5.106 0.2224 15.57 13.54 10.91 0.8847

12.28 70.51 5.614 5.652 5.163 0.2216 14.91 12.92 12.14 0.7638

18.51 67.00 5.840 5.799 5.312 0.1656 13.77 12.34 42.27 −1.469
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2. Pressure dependence

The electronic and lattice contributions �see Table IV� de-
crease with pressure, quite slowly for the first; the cubic
phase having a relatively large positive Grüneisen parameter
for the infrared-active T1u mode ��=4.3�, the decrease is
faster for the lattice contribution.

Data on the refractive index n=��� are available on
yttria-stabilized cubic zirconia;31 the logarithmic derivative
is computed to be � ln n /�p= �−2.676�0.102�
�10−4 GPa−1, which is quite different from the experimen-
tally found value �−1.0�0.5��10−4 GPa−1, both in the
same 0–8 GPa range. Doping might be the source of such a
divergence �the sample used was doped with 20% mol
Y2O3�.

The decrease with pressure of the electronic contribution
can also be estimated through the Mueller parameter

�0 = 	 � ln �

� ln V



T

�see Ref. 32�; assuming Eq. �4� is valid, the polarizability �
can be computed for each volume and a value of �0
=1.072�0.002 is found, to be compared to 1.02�0.01 de-
rived in Ref. 31.

C. Tetragonal P42 Õnmc phase

1. Results at p=0

The electronic dielectric tensor has tetragonal �4 /mmm�
symmetry; as seen in Table II, there is a distinct anisotropy,
as is also the case for the Born effective charges �symmetry
4 /mmm and mmm for Zr and O, respectively�. These
anisotropies, observed also for the elastic properties �see, for
instance, Refs. 33–37�, are especially noticeable when con-
sidering the fact that the tetragonal polymorph is but a slight
modification of the cubic phase. The present computations
are in good agreement with the previous computations in
Refs. 21 and 22.

Wave numbers are given in Table V; the softening of the
phonons for both GGA computations clearly appears. We
have �modes being regrouped according to activity�

�vib�Zr� = �A2u + Eu� + �B1g + Eg� ,

�vib�O� = �A2u + 2Eu� + �A1g + B1g + 2Eg� + B2u

the motion of the Zr sublattice is almost entirely responsible
of the Raman-active B1g mode at 323.2 cm−1 and Eg mode at
144.5 cm−1.

The lattice dielectric tensor is evaluated with the LDA
potentials as

�lattice�LDA� = �43.24 0 0

0 43.24 0

0 0 14.88
�

in excellent agreement with previous computational
results3,21 whereas the GGA computations give

TABLE IX. Wave numbers �in cm−1� of the phonon modes and
symmetry assignment for the orthorhombic Pbca phase. See the
caption to Table III.

Infrared GGA

B1u

174.5, 227.0, 263.0, 303.4, 328.8, 363.2, 507.8,
620.6

B2u

155.6, 237.1, 258.6, 339.7, 376.2, 427.5, 556.0,
643.4

B3u

96.22, 238.1, 270.8, 314.6, 344.6, 376.8, 483.2,
685.0

Raman GGA

Ag

127.9, 166.0, 194.7, 275.2, 315.0, 339.2, 376.9,
515.6, 561.8

B1g

154.4, 201.3, 274.5, 294.3, 395.5, 417.7, 530.9,
598.9, 645.3

B2g

176.9, 218.2, 244.6, 281.9, 296.3, 412.8, 461.6,
528.5, 754.6

B3g

134.5, 166.0, 238.8, 277.6, 327.7, 457.1, 514.5,
566.2, 650.1

Silent GGA

Au

109.1, 164.2, 187.4, 296.1, 341.8, 385.3, 467.9,
528.8, 682.2

Infrared LDA

B1u

180.2, 250.2, 281.3, 337.0, 360.7, 410.4, 547.6,
650.8

B2u

172.3, 250.0, 274.3, 381.0, 407.7, 456.0, 593.5,
677.3

B3u

101.7, 257.3, 309.7, 345.2, 383.8, 412.2, 504.9,
715.9

Raman LDA

Ag

136.9, 184.4, 204.6, 315.0, 344.1, 359.2, 414.0,
550.0, 599.2

B1g

173.7, 213.8, 285.6, 307.6, 419.6, 443.2, 563.2,
637.9, 676.6

B2g

191.3, 223.8, 261.0, 307.5, 328.2, 442.0, 480.4,
563.2, 789.0

B3g

148.3, 172.7, 261.4, 318.7, 347.0, 474.6, 549.3,
600.9, 685.6

Silent LDA

Au

117.6, 173.5, 202.4, 309.6, 377.9, 419.6, 493.2,
562.8, 716.7
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�lattice�GGA� = �104.4 0 0

0 104.4 0

0 0 13.11
� .

We notice that the GGA grossly overestimates these quanti-
ties; increasing the BZ sampling to 8�8�8 and the cut-off
energy to 30 Ha does not much change these results, yielding
43.94 and 14.93 �LDA�, and 113.6 and 13.47 �GGA� for the
�001� and �001� components, respectively. The already large
contribution of the Eu mode at 148.3 cm−1 �see Fig. 1� is
increased nearly fourfold by the GGA, for which this fre-
quency is 79.37 cm−1 instead.

Again we observe a marked anisotropy in the lattice di-
electric tensor, as we did for the elastic properties. The dou-
bly degenerate mode at 148.3 cm−1 �Eu� accounts for 80% of
the �11

lattice component with a contribution similar to the cubic
T1u mode �35 against 30, see Fig. 1� whereas the A2u mode is
the only responsible of the �33

lattice component; the lower con-
tribution �one third� of the latter with respect to the Eu
modes, in spite of nearly equivalent strengths �see Fig. 1�, is
caused by the already large frequency.

2. Pressure dependence

As seen in Sec. III B, Part I, the Grüneisen parameters of
the infrared-active modes range from a very low value, 0.221
for the highest-frequency Eu �LO� mode, to a very high one,
8.91 for the lowest-frequency Eu �TO� mode. Consequently,
the value of the lattice contribution is expected to increase
with the equilibrium volume and to decrease �sharply for
�11

lattice� with pressure. This is the observed behavior for the
latter �see Table VI�; on the other hand, the small increase of
�33

lattice with p is to be attributed to a gain in oscillator strength
�see Eq. �5� above�, which in turn stems from the increase in
magnitude of the Z33

eff component of the Born effective charge
�see Eq. �2��, which follows the same trend than �33

� �see
below, and also Fig. 4�b� in Ref. 7�.

As can be seen in Table VI, the �11
� component shows little

change with p �� ln n /�p= �1.036�0.050��10−4 GPa−1�,
whereas �33

� increases with pressure, similarly to the mono-
clinic phase but in contrast to the cubic phase �� ln n /�p
= �1.337�0.04��10−3 GPa−1 in the 0–30 GPa pressure
range�. At a pressure of approximately 36 GPa, the tetragonal

phase undergoes a transition to the cubic phase �see Ref. 7
and Part I�, and consequently the dielectric tensor becomes
isotropic; this transition is also apparent in the Raman spec-
tra �Sec. IV�.

D. Monoclinic P21 Õc phase

1. Results at p=0

The Cartesian axes chosen to represent the dielectric ten-
sor are Ox along �100�m, Oy along �010�m, and Oz orthogo-
nal to both. The electronic dielectric tensor has invariance
group 2 /m, whereas the Born effective charges all have in-

variance group 1̄. Both tensors are in excellent agreement
with those computed in Ref. 21, although the used Cartesian
axes are not explicitly indicated there �the monoclinic angle
� however is close to � /2 so the difference between the
rotated tensors is small, see below�. The monoclinic and te-
tragonal phases have similar electronic dielectric properties
as can be seen in Table II with a strong anisotropy in the
�001� direction for both. This similitude is also found for the
elastic properties,37 which would suggest a privileged rela-
tionship between the �001�t and �001�m directions.

Using Eq. �4� �ionic limit� and taking as dielectric con-
stant the average value of the diagonal terms of the tensor,
we find a polarizability of 32.29 a.u.3=4.785�10−3 nm3, in
good agreement with the experimental result of Ref. 42,
which gives 4.64�10−3 nm3.

The vibration representation decomposes according to

�vib�Zr� = 3�Au + Bu� + 3�Ag + Bg� ,

�vib�O� = 2�vib�Zr�

as atoms all occupy orbit 4e; the Zr ions contribute to a large
extent to the Raman-active modes between 180 and
225 cm−1, and negligibly to the others. Wave numbers are
indicated in Table VII. The agreement with experiment is
generally fair, in particular for Raman frequencies. The lat-
tice contribution is computed to be

TABLE X. Pressure and volume dependence of the electronic and lattice contributions to the dielectric
tensor for the orthorhombic Pbca phase.

p
�GPa�

V
�au3 /atom� �11

� �22
� �33

� �11
lattice �22

lattice �33
lattice

−12.00 77.86 5.706 5.525 5.383 27.26 21.06 19.54

−7.986 76.29 5.696 5.519 5.375 24.76 19.01 18.06

−3.949 74.85 5.688 5.519 5.366 22.76 17.44 16.99

0.1 73.51 5.683 5.523 5.358 21.09 16.18 16.21

4.220 72.25 5.679 5.531 5.352 19.58 15.11 15.51

8.236 71.04 5.684 5.552 5.344 18.40 14.26 15.28

12.31 69.88 5.693 5.574 5.340 17.28 13.51 15.08

16.35 68.75 5.708 5.603 5.337 16.24 12.86 15.07
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�lattice�LDA� = � 16.66 0 0.9793

0 14.76 0

0.9793 0 10.99
�

in excellent agreement with the computed values in Refs. 6
and 21. The GGA gives instead

�lattice�GGA� = �19.05 0 1.478

0 16.92 0

1.478 0 13.00
�

still overestimated with respect to the LDA.
The absence of strong low-frequency infrared modes is

remarkable, especially when compared to the tetragonal
phase �see Fig. 1� and results in a lower lattice contribution
to the dielectric tensor than for the cubic or tetragonal
phases; for instance, the strongest monoclinic mode is at
twice the frequency of its tetragonal equivalent, implying a
reduced contribution by a factor of 8=4�2 �the second fac-
tor coming from the ratio of the volumes of the primitive
cells�; given the symmetry, this mode contributes to the
�11

lattice component, but not to the other diagonal components.

2. Pressure dependence

As can be seen from the results in Table VIII, the elec-
tronic contribution increases while the lattice contribution
decreases with increasing pressure. There is however a non-
monotonic behavior for the �33

� component, also seen with
the Pbca phase �see below�: the variation is, if we disregard
the datum at 18 GPa, rather reduced. The increase with pres-
sure is the expected behavior for predominantly ionic com-
pounds; this was anticipated because the Clausius-Mossotti
Eq. �4�, valid in the ionic limit, yields a value close to ex-
periment. Data from Ref. 31 give the logarithmic derivative
of the refractive indices for a Cartesian basis B�= �c�� ,b� ,c��; if
P is the matrix of the rotation of angle ��p�−� /2 around
�010�, where ��p� is the monoclinic angle which is a func-
tion of pressure p, the transformed dielectric tensor in the B�
basis is ��= P−1 ·� · P. We have computed � ln n /�p for posi-
tive values of the pressure �as in the experiment� and found:
�i� in the �010� direction, �1.474�0.068��10−3, in serious
disagreement with experiment, which gives �−5.0�0.5�
�10−4 GPa−1 and thus a decrease in the refractive index
with pressure; �ii� in the c�� direction, �1.355�0.115�
�10−3 GPa−1, in excellent agreement with the experimental
value of �13.5�0.5��10−4 GPa−1. The causes of such a dis-
similar behavior are not understood. The logarithmic deriva-
tive along the �001� direction is found to be
�1.863�0.068��10−3 GPa−1. The influence of pressure is
tenfold the one observed in the cubic phase.

As mentioned in Part I, computations in the LDA case
indicate that the monoclinic phase becomes unstable between
18 and 24 GPa; it can be seen from Table VIII that the �12

lattice

component decreases with pressure and should reach zero
between 12 and 18 GPa. At 18 GPa, the lowest infrared-
active mode at 121.1 cm−1 �compare with its equivalent Bu
mode at 230.7 cm−1 at p=0, see Table VII� is single-
handedly responsible for the high value of �33

lattice and with
two other modes of the negative value of �12

lattice.

E. Orthorhombic Pbca phase

1. Results at p=0

No experimental or theoretical data are available on this
phase. The electronic dielectric tensor �invariance group

TABLE XI. Wave numbers �in cm−1� of the phonon modes and
symmetry assignment for the orthorhombic Pnma phase. See the
caption to Table III and the text for the correspondences. A mode at
201 cm−1 �indicated as “very very weak” in Ref. 48� could not be
assigned.

Infrared GGA LDA

B1u 137.7 181.3

280.3 312.8

393.7 425.0

559.8 605.6

609.4 632.3

B2u 256.5 295.4

502.7 540.8

B3u 177.2 213.6

331.4 367.1

363.3 390.8

482.6 513.5

659.6 693.3

Raman GGA LDA Expa

Ag 150.4 166.8 163

225.1 242.6 239

333.5 359.5 362

415.1 435.7 436

526.1 566.1 569

584.5 619.3 622

B1g 152.9 176.2 167

365.1 374.6 378

557.9 597.3

B2g 252.6 286.4 279

326.0 342.5 341

363.1 390.7 387

512.4 542.7

538.5 555.0 561

616.0 662.5 661

B3g 139.1 154.7 149

395.7 405.4 413

556.8 602.7 601

Silent GGA LDA

Au 104.8 120.2

293.9 313.1

439.1 483.0

aReference 48.
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mmm� and the Born effective charges �invariance group 1̄�
reported in Table II are found to be similar to those of the
tetragonal and monoclinic phases, while slightly less aniso-
tropic.

Wave numbers are given in Table IX. The decomposition
of the vibrational representation is

�vib�Zr� = 3�B1u + B2u + B3u� + 3�Ag + B1g + B2g + B3g� + 3Au,

�vib�O� = 2�vib�Zr� .

Finally, the lattice contribution to the dielectric tensor is

�lattice�LDA� = �21.09 0 0

0 16.18 0

0 0 16.21
�

somewhat higher than the values obtained for the monoclinic
phase. This is explained by the large number of strong infra-

red modes, as illustrated in Fig. 1, with respect to the mono-
clinic phase; these modes are however strongly penalized by
the volume term in Eq. �1�, which explains the relatively
modest values of the lattice contribution �compare in Fig. 1
the contributions of two equally strong modes of the Pbca
and Pnma polymorphs�. Furthermore, because of low sym-
metry just as in the monoclinic case, the various modes con-
tribute for one component only; for instance, the mode at
257.3 cm−1 accounts for half the �11

lattice component but for
nothing else �Table X�.

The GGA result is

�lattice�GGA� = �26.21 0 0

0 20.01 0

0 0 18.71
�

somewhat overestimated.

TABLE XII. Pressure and volume dependence of the electronic and lattice contributions to the dielectric
tensor for the orthorhombic Pnma phase.

p
�GPa�

V
�au3 /atom� �11

� �22
� �33

� �11
lattice �22

lattice �33
lattice

−11.91 68.99 6.348 6.104 6.242 26.19 24.73 26.70

−5.963 67.04 6.280 6.099 6.263 22.14 20.95 21.19

0.007 65.48 6.227 6.083 6.257 19.03 18.22 18.01

6.022 64.12 6.183 6.063 6.246 16.76 16.19 15.86

12.09 62.91 6.148 6.046 6.232 15.06 14.64 14.33

18.17 61.81 6.117 6.030 6.219 13.74 13.42 13.15

24.25 60.81 6.090 6.015 6.207 12.69 12.44 12.21

36.00 59.09 6.048 5.992 6.189 11.15 10.99 10.84

48.00 57.56 6.016 5.974 6.174 10.03 9.916 9.827

0 250 500 750

(a) P42/nmc

0 GPa

12 GPa

24 GPa

30 GPa

33 GPa

36 GPa

0 250 500 750

(b) P21/c

0 GPa

8 GPa

12 GPa

18 GPa

24 GPa

0 250 500 750

(c) Pbca

0 GPa

4 GPa

8 GPa

12 GPa

16 GPa

0 250 500 750

(d) Pnma

0 GPa

12 GPa

24 GPa

36 GPa

48 GPa

FIG. 2. Variation with pressure �indicated just above each curve on the left� of the computed Raman spectra of the �a� tetragonal, �b�
monoclinic, �c� orthorhombic Pbca, and �d� orthorhombic Pnma phases �LDA�. x axis: Raman shift in cm−1, y axis: Raman intensity in
arbitrary units. �a� The cubic case is well represented by the curve at 36 GPa of the tetragonal phase.
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2. Pressure dependence

The electronic contribution shows a nonmonotonic behav-
ior in the �100� and �010� directions whereas the �33

� compo-
nent decreases with pressure. As the variation is extremely
weak overall, in practice the electronic contribution can be
considered to be constant in the studied pressure range.

The anisotropic dependence on pressure of the lattice con-
tribution is explained by the fact that, while a third of the
value of the �33

lattice component comes from the lowest-
frequency mode �B1u at 181.3 cm−1�, which has a very low
Grüneisen parameter �0.277�0.06�, all the other contribut-
ing modes have higher Grüneisen parameters: for instance
the mode at 257.3 cm−1 has �=1.98 and its contribution is
therefore already cut by 25% at 12 GPa.

F. Orthorhombic Pnma phase

1. Results at p=0

The electronic dielectric tensor has for invariance group
mmm and is only slightly anisotropic �see Table II� while
reaching the highest value for all polymorphs, as predicted
by Ref. 47. The Born effective charges �invariance group
2 /m� while also only slightly anisotropic are however in line
with the values obtained for the other phases.

The vibration representation is decomposed according to

�vib�Zr� = �2B1u + B2u + 2B3u� + �2Ag + B1g + 2B2g + B3g�

+ Au,

�vib�O� = 2�vib�Zr�

Zr ions contribute for two-thirds of the intensity of the Ra-
man mode at 166.8 cm−1, and very little to the other Raman-
active modes. In Table XI the wave numbers are reported, as
well as the available experimental result. The correspon-
dence is based on Raman activity and the proximity of the
wave number values, as no symmetry assignment was pub-
lished.

The lattice contribution to the dielectric tensor is then
found to be

�lattice�LDA� = �19.03 0 0

0 18.22 0

0 0 18.01
�

similar to the tensor obtained for the orthorhombic Pbca
phase; the slightly smaller values are essentially a conse-
quence of a shift toward larger frequencies of the strong
infrared modes �see Fig. 1�; for instance, the mode at
295.4 cm−1 is the first �in order of increasing frequencies� to
contribute to the �yy

lattice component �Table XII�.
The GGA value is again overestimated

�lattice�GGA� = �25.26 0 0

0 23.62 0

0 0 24.59
� .

2. Pressure dependence

The electronic contribution decreases with applied pres-
sure, which indicates that the Pnma phase behaves more as a
covalent than as a ionic compound: this is consistent with its
higher bulk modulus. The logarithmic derivatives of the re-
fractive indices are, for the three �100�, �010�, and �001�
directions, −4.794�0.157, −2.380�0.048, and
−1.652�0.018 �all figures in 10−4 GPa−1�, respectively, ex-
hibiting a stronger anisotropy than hinted at when comparing
the refractive indices themselves.

IV. RAMAN SPECTRA

The Raman spectra can be deduced from the derivatives
�here calculated by finite differences� with respect to atomic
displacements of the electronic dielectric tensor; see Refs. 49
and 50 and references therein for details. The spectra are
computed using �i� the Raman intensities which are propor-
tional to Si /�i, where Si is the scattering activity coefficient
and �i the frequency of the mode i, �ii� a Lorentzian broad-
ening of 5 cm−1, and �iii� a temperature of 1 K for the pho-
ton occupation number. In this Section, �i stands for the
value of the Grüneisen parameter of mode i.

The cubic case is the simplest, as there is only one
Raman-active mode �T2g ,�i=1.5�; the curve at 36 GPa in
Fig. 2�a� is representative of the shape of the Raman spectra
at various pressures. Published Raman spectra are for stabi-
lized samples only;25–27 we have already insisted on the no-
ticeable effects such a doping can have on the infrared and
Raman spectra, making comparisons with experiments rather
difficult.

The case of the tetragonal polymorph has been treated
extensively in Refs. 7 and 39; the present computations are
in agreement with both �see Fig. 2�a��. The already discussed
redshift of the A1g mode �the strong peak to the left, for
which �i=−2.5� appears clearly, as well as the reduction of
its intensity with increasing pressure, until its total disappear-
ance. On the contrary, we can see the blueshift of the B1g and
Eg modes �the three peaks to the right, all with positive �i�
with a larger intensity and progressively merging as pressure
is increased. At 36 GPa, the transition to the cubic phase is
complete and a unique peak is left at 680 cm−1, which is
exactly the computed frequency of the cubic T2g mode at that
pressure.

The three remaining phases exhibit more complex spectra
because of the larger number of atoms in their primitive
cells. The monoclinic spectrum at p=0 �Fig. 2�b�� is in
agreement with the published experimental data;51–54 the
most intense peak corresponds to the Ag mode at 467.8 cm−1

�experimental data give a range of 463–476 cm−1�. The
spectrum changes with pressure according to the interactions
of modes having different Grüneisen parameters; however,
contrary to the orthorhombic polymorphs, the monoclinic
phase is characterized by modes with a nonmonotonic de-
pendence on pressure �the Bg mode at 320.7 cm−1 is an ex-
ample� which complicates the interpretation of the spectra.

No experimental data are available for the orthorhombic
Pbca phase. The Raman spectra are characterized by the
large number of active modes, the most intense being the
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Ag-B1g-B2g-B3g set at around 300 cm−1, the B3g mode at
550 cm−1 and the B2g mode at 789 cm−1; the first set seems
to become the most prominent as pressure increases.

The spectrum of the orthorhombic Pnma phase �see Fig.
2�d�� is in good agreement with the experimental data48 ex-
cept for the intensity of the mode at 167 cm−1 which is
underestimated by a factor of 4 with respect to the experi-
mental result �see their Fig. 4�; the dependence on the photon
temperature however significantly affects the value of this
peak. The most intense mode is correctly assigned at
436 cm−1 �Ag mode�, which can be followed up to 48 GPa:
at 24 GPa it interacts strongly with its neighbors which, hav-
ing larger values of �i �1.3–1.7 against 1 for the Ag mode�,
have a stronger dependence on pressure �they “travel
faster”�. The high-frequency modes form a relatively coher-
ent group as they all have similar �i �about 1.5� and thus
“travel together” without interaction. The other modes have
very different �i and thus merge and interact strongly, then
separate again as pressure is further increased.

V. CONCLUSIONS

We have investigated the dielectric properties of the five
known zirconia polymorphs under pressure through density-
functional perturbation theory. The electronic contribution to
� is found to be comparable in all these structures with a
somewhat higher contribution in the orthorhombic Pnma
polymorph.47 The agreement with the available experimental
data on refractive indices31 for the monoclinic case is con-
trasting.

On the other hand, as expected, the lattice contribution to
� is found to depend rather markedly on the structure. Be-
cause of the generally large values of the Grüneisen param-
eters for the five polymorphs, the GGA is found to be inap-
propriate. Indeed, due to its overestimate of equilibrium
volumes, the GGA systematically underestimates the phonon
frequencies, and thus overestimates the value of the dielec-
tric constants. The more reliable computations of the dielec-
tric properties are therefore those performed in the LDA,
which are in very good agreement with previous computa-
tions �all done in the LDA, and with p=0� and available

experimental data on infrared- and Raman-active modes. The
cubic and tetragonal phases, because of their high symmetry,
have degenerate modes which add to the same components
of the lattice contribution to �; thus a single mode can be
very efficient in increasing the dielectric constants �see Fig.
1�, aided in this by the relatively small volumes of the primi-
tive cells of these polymorphs.

On the contrary, owing to their lower symmetry there are
no such degenerate modes in the monoclinic and orthorhom-
bic phases: a single mode generally contributes to a single
component of � only, and the primitive cells are furthermore
comparatively larger, having four or eight times the volume
of their cubic counterpart. The case is clearly illustrated by
the two orthorhombic polymorphs in Fig. 1: the Pbca phase
has more modes with higher oscillator strength than the
Pnma polymorph but their effective contributions are cut in
half by the fact that the primitive cell of the former is twice
as big as that of the latter. The monoclinic phase suffers at
the same time of a lack of low-frequency modes, of a relative
mode weakness, and of a volume effect: its lattice contribu-
tion is therefore the lowest of all polymorphs. Altogether, we
find none of the monoclinic and orthorhombic phases to have
comparable values of the dielectric constants to those in the
cubic and tetragonal structures.

An interesting observation is that both the cubic and te-
tragonal phases exhibit low-energy modes, and high dielec-
tric constants, in the �001� plane, having at the same time the
corresponding C66 modulus �=C44 in the cubic case� approxi-
mately half that of the other three polymorphs.37 There is
likely a connection between these two properties; however, a
better understanding of such the complex interplay among
elastic, vibrational, electronic, and dielectric properties re-
quires a detailed analysis which is beyond the scope of the
present work.
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